CENOS : Simulation Software : Induction Heating : Radio Frequency : Wireless Charging
  • Products
    • Radio Frequency
    • Induction Heating
    • Wireless Charging
    • Electromagnetic Stirring and Pumping of Liquid Metals
    • Busbar Heating
  • Resources
    • News and articles
    • Case studies
    • User stories
    • Academic stories
    • Testimonials
  • Documentation
  • Academic
  • About
  • Contact
  • Book a demo
  • Menu Menu
Power control in simulations

Power control in simulations

July 27, 2020/in Induction Heating

Power control is the most widely used induction heating process control available. Power supply manufacturers offer different types of control such as current, voltage or even frequency control, but the power control remains the most popular one.

Process engineers who are overseeing the heating very often do not even know the actual current or voltage values in the inductor, as it is not relevant to the process supervision. When a simulation is built to optimize the heating process, many engineers stumble upon the fact that they cannot use power as an input – instead they need to define the current or voltage in the inductor. Why?

Physics behind an induction heating simulation

The electromagnetic side of the induction heating in its base is governed by the well-known Maxwell equations, which together define the relations between the electrical charges, currents, and electric and magnetic fields. These equations and their derivations are used not only in

CENOS, but in every simulation software which can calculate electromagnetics.

The problem is that the power value which is known to the process engineers cannot be used as an input in these equations, making it fundamentally impossible to carry out power controlled induction heating simulations.

We now understand the reason why we can’t use the power as an input in a simulation, but that does not resolve the problem of what to do when only the power value is known. In such a situation multiple approaches can be used depending on the simulation setup.

Without B(H) (constant permeability)

In everyday calculations and initial design iterations, the B(H) curve will probably not be used in material definitions to save the calculation time. If you do not use a B(H) curve in your simulation, you can easily calculate the current value which corresponds to your desired power value with just one simulation.

1. Choose one random current value and run 1 time step of purely electromagnetic simulation as it will take much less time to calculate (you can easily disable thermal analysis in the Induction Heating physics). You will find the power value corresponding to the current you defined.

2. Without the B(H) curve the power value is proportional to the current. We can calculate the necessary current value if we know the relation between I1 and P1.

Once you have calculated the necessary current I2 to get the desired power P2, you can enable thermal analysis, enter the calculated current value, and run the simulation with a specified power.

With B(H)

If you want to use the B(H) curve in your material definition, input current might no longer be proportional to the output power. In such a case you need to take your best guess at what the inductor current could be and run one time step of purely electromagnetic simulation. Take a look at the power value in the results and increase or decrease the current until you reach the desired power consumption.

With this approach, you will need to carry out a couple of simulations to find the correct current value. The closer your first guessed current value will be to the final (real) one, the fewer iterations you will need. If the first guess is good, typically it takes no longer than 2-3 iterations. Remember, that only the electromagnetic task calculates fastly, so it shouldn’t take more than 15-30 minutes to get to the desired current value in such an iterative algorithm.

μ(T) (heated above Curie temperature)

If the part is heated above Curie temperature, power controlled simulation is not possible, as the impedance of the system changes around and after Curie point that causes jump in current and voltage values. Because of this, to keep the same power value, there needs to be different current or voltage values before and after the Curie point (you can see how the power value changes at constant current and voltage values).

In such a case current or voltage can be defined as table values depending on time, and with multiple iterations (similar to the steps with B(H)) you can try to find the setup which corresponds to the necessary power consumption. You can run the current (or voltage) estimation procedure separately under and above Curie point, then you should figure out the time moment for this transition in the additional iterative loop.

CENOS team hopes this guide will help engineers struggling with the simulation of power controlled cases. In case you still struggle, feel free to reach out to our engineering support team.

Print Friendly, PDF & Email
Share this entry
  • Share on Facebook
  • Share on X
  • Share on WhatsApp
  • Share on LinkedIn
  • Share on Tumblr
  • Share on Vk
  • Share on Reddit
  • Share by Mail
https://cenos-platform.com/wp-content/uploads/2025/01/power-control-in-simulations-scaled.webp 1842 2560 developer /wp-content/themes/cenos/images/layout/logo.png developer2020-07-27 17:51:452025-01-22 18:04:03Power control in simulations

Browse by Categories

  • Academic
  • Antenna Design
  • Busbar Heating
  • Case studies
  • Electromagnetic Stirring and Pumping
  • General news
  • Induction Heating
  • Radio Frequency
  • User testimonials
  • Wireless Charging

Latest in Blog

  • Catheter tipping case study: making better medical devicesApril 10, 2025 - 11:39 am
  • How simulation improves surface hardening for vice components
    How to use FreeCAD and CENOS simulation to improve surface hardening for vice componentsApril 1, 2025 - 1:09 pm
  • Optimizing solidification simulation in electromagnetic stirring applications: case study
    Optimizing solidification simulation in electromagnetic stirring applications: case studyJanuary 29, 2025 - 4:20 pm
  • Using simulation software to improve micro mobility mechanics
    Using simulation software to improve micro mobility mechanicsDecember 10, 2024 - 4:34 pm
  • Wireless charging of industrial robots: case study
    Wireless charging of industrial robots: case studyDecember 6, 2024 - 8:32 pm

We are a software company on a mission to reshape the engineering process by providing engineers of all disciplines with truly accessible simulation tools for practical work.

caotica.ee veebidisain, kodulehe disain, veebi arendus, kodulehe arendus, kodulehe tegemine, wordpress arendus caotica.ee veebidisain, kodulehe disain, veebi arendus, kodulehe arendus, kodulehe tegemine, wordpress arendus

Products

Radio Frequency
Induction Heating
Wireless Charging
Electromagnetic Stirring, Melting and Pumping of Liquid Metals
Busbar Heating

Resources

Documentation
News and articles
Case studies
Testimonials
About
Careers

Get in touch

info@cenos-platform.com

Americas

C. Héroe de Nacozari 25B-int V-2210, Centro, 76000 Santiago de Querétaro, Qro., Mexico.
(US) +1 (708) 794 4046

Europe

Zeļļu iela 23, Riga, Latvia.
(EU) +371 27819253

Print Friendly, PDF & Email
© 2017–2025 CENOS™ SIA. All Rights Reserved. caotica.eu web design, web development, digital marketing, wordpress development caotica.eu web design, web development, wordpress development, digital marketing, online marketing
  • Privacy & Data Policy
  • Terms & Conditions
Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

AcceptSettings

Cookie and Privacy Settings



How we use cookies

We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

Other external services

We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

Google Webfont Settings:

Google Map Settings:

Google reCaptcha Settings:

Vimeo and Youtube video embeds:

Privacy Policy

You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

Privacy & Data Policy
Accept settings