CENOS : Simulation Software : Induction Heating : Radio Frequency : Wireless Charging
  • Products
    • Radio Frequency
    • Induction Heating
    • Wireless Charging
    • Electromagnetic Stirring and Pumping of Liquid Metals
    • Busbar Heating
  • Resources
    • News and articles
    • Case studies
    • User stories
    • Academic stories
    • Testimonials
  • Documentation
  • Academic
  • About
  • Contact
  • Book a demo
  • Menu Menu
This is a case where a corner of the inductor was somewhat far away (d) from the cooling channel so it was overheating.

Can computer simulation help increase induction coil lifetime?

June 11, 2020/in Case studies, Induction Heating

The most common issues with inductors

Many induction coils are low maintenance, particularly the coils that are used on lower power densities and those without magnetic flux concentrators. If any leaks develop, the coils should be removed from production, cleaned, and repaired. In the worst-case – replaced. Let’s look at some of the most common issues with inductors.

Mishandling

Human error is usually to blame when inductors are physically damaged by improper care. They are often dropped, knocked off of workbenches, or not cleaned or stored properly – that can be avoided with good housekeeping and safety rules for employee training.

Arcing

Arcing may occur due to the coil coming in contact with the workpiece or it could be the result of foreign debris. Anytime arcing occurs, production should be stopped and the condition remedied. If the workpiece is hitting the coil, the condition could be from vibration due to restriction of the coil to the cooling water, poor position of the workpiece relative to the coil, or eccentric rotation of the workpiece.

Arcing across the turns of the coil or bus support of the coil is usually due to scale or oil contamination in the quench system. Better cleaning of the coil or scale removal from the quench system should be done. Another condition is arcing across the flux concentrator as it degrades.

Fatigue

Coils with high current concentrations can have flexure, particularly ar soldered joints that have abrupt changes in direction of the cooling water. This can ultimately cause the coil to fatigue and break. Also, some coils can have localized current concentrations, which can cause the coils to overheat and fail. Coils usually fail at a stress point, where there is an abrupt change in direction of the coil, such as a right angle with a brazed joint.

Deterioration of electrical contact

The bolts holding the coil or bus to electrical contact may loosen causing the current to flow through the bolt. This results in overheating and melting of both, with subsequent loss of current to the coil.

Degradation of the magnetic flux concentrator

All concentrators degrade with time in service. This is a natural phenomenon, the concentrator material degrades in time due to the intensity of the magnetic flux field and the heat from radiation.

Overheating

Overheating can result in coil failure. Water flow can be reduced by cooling system problems, or leaks can occur for any reason. Flux concentrators can also have insufficient cooling, resulting in overheating and premature failure. To fix this one must either increase the water flow by removing sharp turns, adding in-line pumps or larger cooling passages, or change the coil design.

Overheating can result in coil failure.

The cost of time and materials to fix this leaking coil makes it a candidate for a complete replacement.

A better design will help

Inductor overheating can cause the coil to crack, crumble, “burn” or even melt. Overheating poses the biggest threat to induction coil lifetime, so an overheating coil needs either more cooling water or a better design.

Making a better design with multiple lab tests is the most common and traditional way, but is there a faster, cheaper way how to increase a coil lifetime? Enter simulation.

With the use of good design practices, one can improve coil longevity and improve production quality. By eliminating failure points in the initial design, proper material selection, improved cooling, and proper magnetic flux control, induction tooling life can be increased. Computer simulation has been proven to be an effective tool for predicting not only electromagnetic parameters of a designed system but also heat patterns in a given part and in the induction coil itself.

Case nr. 1

For the first case, a simple 2D wedge-shaped inductor profile with a flux concentrator was simulated at 10kHz.

The second case features a radically different cooling channel as well as a filleted nose and slightly cut concentrator.

To simulate the cooling effect from the fluid flow in the channel, a convection boundary condition was applied to the inside of the inductor. The heat transfer coefficient was decreased in the smaller parts of the profile to approximate boundary layer fluid effects.

The results clearly highlight the importance of cooling channel shape. In the first case, the nose of the inductor reaches over 600 °C.

For the first case, a simple 2D wedge-shaped inductor profile with a flux concentrator was simulated at 10kHz.

You can find more information about a similar design in the article “Best Practice for Design and Manufacturing of Heat Treating Inductors” by Fluxtrol.

Case nr. 2

This is a case where a corner of the inductor was somewhat far away (d) from the cooling channel so it was overheating.

This is a case where a corner of the inductor was somewhat far away (d) from the cooling channel so it was overheating.

Most experienced induction coil designers will know how these changes demonstrated in this article affect the temperature distribution, however it is very hard to predict the magnitude of these effects. CENOS allows the user to explore these effects at various frequencies, powers, geometries saving countless hours of physical experimenting.

Most experienced induction coil designers will know how these changes demonstrated in this article affect the temperature distribution

Reduce the number of physical tests and design time of induction coil and systems. Create heating recipes with confidence with CENOS. Start your free trial today or join our webinars to learn more.

Print Friendly, PDF & Email
Share this entry
  • Share on Facebook
  • Share on X
  • Share on WhatsApp
  • Share on LinkedIn
  • Share on Tumblr
  • Share on Vk
  • Share on Reddit
  • Share by Mail
https://cenos-platform.com/wp-content/uploads/2025/01/can-computer-simulation-help-increase-induction-coil-lifetime-3.webp 663 644 developer /wp-content/themes/cenos/images/layout/logo.png developer2020-06-11 18:10:412025-02-13 13:43:58Can computer simulation help increase induction coil lifetime?

Browse by Categories

  • Academic
  • Antenna Design
  • Busbar Heating
  • Case studies
  • Electromagnetic Stirring and Pumping
  • General news
  • Induction Heating
  • Radio Frequency
  • User testimonials
  • Wireless Charging

Latest in Blog

  • Catheter tipping case study: making better medical devicesApril 10, 2025 - 11:39 am
  • How simulation improves surface hardening for vice components
    How to use FreeCAD and CENOS simulation to improve surface hardening for vice componentsApril 1, 2025 - 1:09 pm
  • Optimizing solidification simulation in electromagnetic stirring applications: case study
    Optimizing solidification simulation in electromagnetic stirring applications: case studyJanuary 29, 2025 - 4:20 pm
  • Using simulation software to improve micro mobility mechanics
    Using simulation software to improve micro mobility mechanicsDecember 10, 2024 - 4:34 pm
  • Wireless charging of industrial robots: case study
    Wireless charging of industrial robots: case studyDecember 6, 2024 - 8:32 pm

We are a software company on a mission to reshape the engineering process by providing engineers of all disciplines with truly accessible simulation tools for practical work.

caotica.ee veebidisain, kodulehe disain, veebi arendus, kodulehe arendus, kodulehe tegemine, wordpress arendus caotica.ee veebidisain, kodulehe disain, veebi arendus, kodulehe arendus, kodulehe tegemine, wordpress arendus

Products

Radio Frequency
Induction Heating
Wireless Charging
Electromagnetic Stirring, Melting and Pumping of Liquid Metals
Busbar Heating

Resources

Documentation
News and articles
Case studies
Testimonials
About
Careers

Get in touch

info@cenos-platform.com

Americas

C. Héroe de Nacozari 25B-int V-2210, Centro, 76000 Santiago de Querétaro, Qro., Mexico.
(US) +1 (708) 794 4046

Europe

Zeļļu iela 23, Riga, Latvia.
(EU) +371 27819253

Print Friendly, PDF & Email
© 2017–2025 CENOS™ SIA. All Rights Reserved. caotica.eu web design, web development, digital marketing, wordpress development caotica.eu web design, web development, wordpress development, digital marketing, online marketing
  • Privacy & Data Policy
  • Terms & Conditions
Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

AcceptSettings

Cookie and Privacy Settings



How we use cookies

We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

Other external services

We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

Google Webfont Settings:

Google Map Settings:

Google reCaptcha Settings:

Vimeo and Youtube video embeds:

Privacy Policy

You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

Privacy & Data Policy
Accept settings